Overview and Contact Information
Statistics is used in most professions, in most sectors of the economy, and in a great many academic areas. Each year some students enter graduate programs in statistics, or in allied fields (business, economics, education, or psychology). Many students enter the job market and later pursue advanced degrees.

Contact Information
Dylan Shepardson, Chair
Connell Heady, Academic Department Coordinator
415A Clapp Laboratory
413-538-2162
https://www.mtholyoke.edu/academics/find-your-program/statistics

Learning Goals
The program in the Department of Mathematics and Statistics is designed with several learning goals in mind:

- To teach the language of the mathematical sciences.
- To provide a command of powerful mathematical tools.
- To foster an ability to ask questions and to make independent discoveries.
- To encourage the experience of mathematics as a distinctively rigorous way of knowing.

In addition, especially through the statistics offering, the rich interplay between an applied context and mathematical models in working with numerical data is an area of particular emphasis.

Faculty
This area of study is administered by the Department of Mathematics and Statistics:
Margaret Robinson, Julia and Sarah Ann Adams Professor of Mathematics, Teaching Fall Only
Jessica Sidman, Professor of Mathematics on the John Stewart Kennedy Foundation
Timothy Chumley, Associate Professor of Mathematics
Alanna Hoyer-Leitzel, Associate Professor of Mathematics
Dylan Shepardson, Robert L. Rooke Associate Professor of Mathematics
Laura Tupper, Associate Professor of Statistics
Isabelle Beaudry, Assistant Professor of Statistics
Chassidy Bozeman, Clare Boothe Luce Assistant Professorship in Mathematics, On Leave 2022-2023
Lidia Mrad, Assistant Professor of Mathematics, On Leave 2022-2023
Marie Ozanne, Clare Boothe Luce Assistant Professorship in Statistics, On Leave 2022-2023
Derek Young, Assistant Professor of Mathematics

Requirements for the Major
A minimum of 36 credits:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-101</td>
<td>Calculus I</td>
<td></td>
</tr>
<tr>
<td>MATH-102</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>MATH-203</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MATH-211</td>
<td>Linear Algebra</td>
<td>4</td>
</tr>
<tr>
<td>STAT-140</td>
<td>Introduction to the Ideas and Applications of Statistics</td>
<td></td>
</tr>
<tr>
<td>STAT-242</td>
<td>Intermediate Statistics</td>
<td>4</td>
</tr>
<tr>
<td>STAT-340</td>
<td>Applied Regression Methods</td>
<td>4</td>
</tr>
<tr>
<td>MATH-342</td>
<td>Probability</td>
<td>4</td>
</tr>
<tr>
<td>STAT-343</td>
<td>Mathematical Statistics</td>
<td>4</td>
</tr>
<tr>
<td>12 additional credits in mathematics or statistics at the 200-level or above</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 36

Requirements for the Minor
A minimum of 16 credits:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one 200-level course in statistics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>At least one 300-level course in statistics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Two additional courses in mathematics or statistics at the 200 level or above</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 16

Additional Specifications
Substitutions are possible with the permission of the department. Students planning a minor in statistics should consult one of the statistics advisors.
With departmental permission, students who have already completed one 100-level exploration course may elect to enroll in a second exploration course at the 200-level so that it may be counted toward the minor.

Course Advice

Beginning the Study of Statistics
A natural way to begin if you have not studied statistics is with STAT-140, Introduction to the Ideas and Applications of Statistics.

A 200-level course in statistics is a good choice if you have taken an advanced placement statistics course or have taken the equivalent of a 100-level statistics course.

Advice to Students with Special Interests

Actuarial science
Students interested in this area should plan to cover the material that is included in the first two actuarial exams as part of their undergraduate program. This material is included in Calculus I (MATH-101), Calculus II (MATH-102), Calculus III (MATH-203), Probability (MATH-342), and Mathematical Statistics (STAT-343), along with Macroeconomic Theory (ECON-211), Microeconomic Theory (ECON-212), and Economics of Corporate Finance (ECON-215). Students are also encouraged to obtain experience through an internship.

Biostatistics, public health, or natural resources
Students interested in these areas should include substantial work in biology, chemistry, geology, and/or environmental studies in their programs.

Economics or business
Many students with these interests choose the special major in mathematics and economics or the special major in statistics and economics.

Engineering
Students interested in engineering often double-major in mathematics and physics and/or participate in one of the College’s five-year, dual-degree programs with Dartmouth’s Thayer School of Engineering, or California Institute of Technology, or the University of Massachusetts (see the Other Degree and Certificate Programs chapter).

Graduate school
Students preparing for graduate school in statistics or mathematics often participate in an undergraduate research program in the summer after the junior year and continue with an honors thesis in the senior year. Students considering graduate work in statistics at the level of a Ph.D. are encouraged to include abstract algebra and especially MATH-301.

Teaching certification
Students interested in pursuing certification for middle school or secondary school should major in mathematics rather than statistics. However, there is increasing emphasis on statistics in secondary school, and any of the applied courses would provide good preparation.

Course Offerings

STAT-140 Introduction to the Ideas and Applications of Statistics
Fall and Spring. Credits: 4
This course provides an overview of statistical methods, their conceptual underpinnings, and their use in various settings taken from current news, as well as from the physical, biological, and social sciences. Topics will include exploring distributions and relationships, planning for data production, sampling distributions, basic ideas of inference (confidence intervals and hypothesis tests), inference for distributions, and inference for relationships, including chi-square methods for two-way tables and regression.
Applies to requirement(s): Math Sciences
S. Kirk, K. Mulder, P. Subedi, The department
Advisory: 2 years of high school algebra

STAT-242 Intermediate Statistics
Fall and Spring. Credits: 4
In this course, students will learn how to analyze data arising from a broad array of observational and experimental studies. Topics covered will include exploratory graphics, description techniques, the fitting and assessment of statistical models, hypothesis testing, and communication of results. Specific topics may include multiple regression, ANOVA, and non-linear regression. Statistical software will be used.
Applies to requirement(s): Math Sciences
I. Beaudry, P. Subedi, L. Tupper, The department
Prereq: STAT-140 or equivalent.

STAT-244 Intermediate Topics in Statistics

STAT-244NF Intermediate Topics in Statistics: ‘Infectious Disease Modeling’
Not Scheduled for This Year. Credits: 4
Infectious disease has plagued humanity since time immemorial. Statistical models serve a critical role in improving understanding of the progression and proliferation of infection in a population, as well as the impact of interventions in stopping the spread of disease. In this course, we will explore regression and compartmental model-based approaches, which will be motivated by some of the most impactful epidemics and pandemics in recent history, including HIV/AIDS, Ebola, Zika, and COVID-19. R statistical software will be used.
Applies to requirement(s): Math Sciences
M. Ozanne
Prereq: STAT-140.

STAT-244NP Intermediate Topics in Statistics: ‘Nonparametric Statistics’
Spring. Credits: 4
The methods taught in traditional statistics courses are based on assumptions that are often not satisfied by real data sets. In this course we will learn about approaches that require fewer assumptions, known as nonparametric methods. After taking this course, students will be able to examine assumptions for different approaches to statistical inference, compare nonparametric statistical tests such as sign and Wilcoxon tests to their parametric equivalents, and implement non-parametric approaches using R. In addition, the course will incorporate computational techniques for statistical analysis, including simulation, permutation tests, and bootstrapping.
Applies to requirement(s): Math Sciences
A. Nussbaum
Prereq: STAT-140.
Advisory: Students should have experience with the programming language R.
STAT-244SC Intermediate Topics in Statistics: 'Statistical Computing'
Fall. Credits: 4
This is an intermediate course in statistical computing and theory using R software. Computational statistics is a rapidly expanding area in statistical research and applications. This course uses R for graphics and simulations. It focuses on a non-calculus-based approach to understanding theoretical statistical concepts through a simulation-based approach. Students will gain knowledge and experience in writing both simple and more advanced simulations in R. It also introduces some other topics such as missing data, resampling methods and numerical methods.
Applies to requirement(s): Math Sciences
P. Subedi
Prereq: STAT-140.

STAT-295 Independent Study
Fall and Spring. Credits: 1 - 4
The department
Instructor permission required.
Advisory: The permission of the department is required for independent work to count toward the major or minor.

STAT-331 Design of Experiments
Fall. Credits: 4
How do you get informative research results? By doing the right experiment in the first place. We'll look at the techniques used to plan experiments that are both efficient and statistically sound, the analysis of the resulting data, and the conclusions we can draw from that analysis. Using a framework of optimal design, we'll examine the theory both of classical designs and of alternatives when those designs aren't appropriate. On the applied side, we'll use R to explore real-world experimental data from science, industry, and everyday life; and we'll discuss key principles for working with expert (and not-so-expert) collaborators to help them set up the experiments they need.
Applies to requirement(s): Math Sciences
L. Tupper
Prereq: STAT-242.

STAT-340 Applied Regression Methods
Fall. Credits: 4
This course includes methods for choosing, fitting, evaluating, and comparing statistical models; introduces statistical inference; and analyzes data sets taken from research projects in the natural, physical, and social sciences.
Applies to requirement(s): Math Sciences
L. Tupper
Prereq: MATH-211 and STAT-242.

STAT-343 Mathematical Statistics
Spring. Credits: 4
This course is an introduction to the mathematical theory of statistics and to the application of that theory to the real world. Topics include probability, random variables, special distributions, introduction to estimation of parameters, and hypothesis testing.
Applies to requirement(s): Math Sciences
L. Tupper
Prereq: MATH-102 and MATH-342.

STAT-344 Seminar in Statistics and Scientific Research

STAT-395 Independent Study
Fall and Spring. Credits: 1 - 8
The department
Instructor permission required.
Advisory: The permission of the department is required for independent work to count toward the major or minor.