Overview and Contact Information

The geology major offers students hands-on learning in the classroom, lab, and field. Intermediate and upper-level courses are relatively small and explore geologic materials, physical and biological processes, and earth history and change. We recommend strongly courses in the cognate sciences (biology, chemistry, and physics), as well as calculus and/or statistics.

Please note that the departments of Geology, Geography and Environmental Studies plan to launch in Fall 2023 a new department and a new major and minor. Details of the transition plan to the new major and minor are awaiting final approval, but students who entered the College before Fall 2023 will at least remain eligible to complete the existing majors/minors in Geology, in Geography, and in Environmental Studies.

Contact Information

Michelle Markley, Chair
Debra LaBonte, Academic Department Coordinator

304 Clapp Laboratory
413-538-2278
https://www.mtholyoke.edu/academics/find-your-program/geology

Learning Goals

Students majoring or minoring in geology learn about the dynamic processes and history that shaped our planet and provide us with the resources and natural environments on which we rely. This is a fascinating field of study that also prepares one for outstanding employment opportunities. Our courses are designed to achieve the following learning goals:

- Develop observational and quantitative skills appropriate for field, laboratory, analytical, and modeling methods of geoscience inquiry.
- Develop sophisticated and nuanced reasoning skills to evaluate multiple working hypotheses, integrate earth science data gathered at different spatial and temporal scales, and critically assess data, ideas, and methods from the published literature.
- Become an effective communicator, able to ask interesting questions, collaborate with peers, and engage thoughtfully and respectfully in discussion; to write about scientific observations and interpretations using appropriate vocabulary and style; and to orally and graphically present data, ideas, and methods from your own research and from published literature.
- We encourage geology majors to be informed about ideas and methods within the cognate sciences of biology, chemistry, physics, and math and statistics.
- Geology majors will understand the importance of earth processes and materials in shaping the history and future of humanity.

Faculty

This area of study is administered by the Department of Geology and Geography:

Steven Dunn, Professor of Geology, Teaching Spring Only

Michelle Markley, Professor of Geology
Mark McMenamin, Professor of Geology
Thomas Millette, Director of the Geo-Processing Lab; Professor of Geography, Teaching Fall Only
Alan Werner, Professor of Geology
Serin Houston, Associate Professor of Geography and International Relations
Marsha Allen, Assistant Professor of Earth Science
Eugenio Marcano, Manager of the Geo-Processing Lab; Instructor in Geology and Geography

Requirements for the Major

A minimum of 36 credits:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 credits in geology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 credits in geology at the 100 level or above</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>16 credits in geology at the 200 level or above</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>8 credits in geology at the 300 level</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4 credits in chemistry</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHEM-150 (or 4 credits of Advanced Placement Chemistry)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 36

Additional Specifications

- No more than 4 credits of independent study (GEOL-295 or GEOL-395) may be counted towards the major.
- Geography, environmental studies, astronomy, and other geology courses in the Five Colleges and from abroad may also apply toward the major as electives or, in some cases, as substitutes for required courses.
- A summer field course may also count for 4-6 credits in geology.

Requirements for the Minor

A minimum of 20 credits:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>One 100-level geology course</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>12 credits in geology at the 200 level or above</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>4 additional credits in geology at the 300 level</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits: 20

Teacher Licensure

Students interested in pursuing licensure in the field of earth and space science can create a special earth science major and combine this course work with a minor in education. For specific course requirements for licensure in earth and space science within the field of geology (and related disciplines), please consult your advisor or the chair of the geology and geography department. Further information about the minor in education (http://catalog.mtholyoke.edu/areas-study/psychology-education/#minortext) and the Teacher Licensure program (http://catalog.mtholyoke.edu/areas-study/psychology-education/#teacherlicensuretext) is available in other sections of the catalog, and consult Sarah Frenette of the psychology and education department.
Licensure also requires a formal application as well as passing scores on the Massachusetts Test of Educator Licensure (MTEL) in both the literacy component and the subject matter component. Copies of the test objectives for the MTEL are available in the Department of Psychology and Education.

Additional information about the Licensure Program, including application materials, can be found on the Teacher Licensure Program website (https://www.mtholyoke.edu/academics/find-your-program/teacher-licensure/).

Course Offerings

GEOL-103 Oceanography
Spring. Credits: 4
Because more than seventy percent of our planet is covered by oceans, the study of marine systems is crucial to our understanding of Earth History and life on the planet. We will examine chemical, physical, geological, and biological processes in the oceans at a variety of scales in time and space. We will explore how the Earth's oceans formed, how they provided the foundations for life, and how they continue to affect weather and climate, stabilize global chemical cycles, erode coastlines and provide access to resources. We will conclude the semester with a discussion of the human impact on the ocean environment including sea level rise, acidification, coral bleaching and over-fishing.
Applies to requirement(s): Math Sciences
A. Werner
Advisory: Potential Environmental Studies and Geology majors should consider taking GEOL-123 concurrently with this course.

GEOL-107 Environmental Geology
Spring. Credits: 4
The only planet known to sustain life, Earth provides all the resources that sustain us, yet at the same time it can be an unpredictable and sometimes dangerous home. Floods, earthquakes, volcanic eruptions, and other natural processes challenge our ingenuity, while we also contend with self-induced problems such as pollution, desertification, and even global climate change. This course examines earth processes, how these affect our lives, and how we can best live with and sustain our environment. May be taken for 200-level credit with permission of instructor.
Applies to requirement(s): Math Sciences
S. Dunn
Advisory: Potential Environmental Studies and Geology majors should consider taking GEOL-123.

GEOL-109 History of Life
Not Scheduled for This Year. Credits: 4
Life forms have inhabited the surface of our planet for most of its history. Earth, as a result, has a strange geology unlike that of any other known planet. In this course we will examine the interrelations between life processes and Earth's crust and atmosphere, and how these relationships interact to generate the geology of the planet. By means of hands-on analysis of rocks and fossils, we will study the origin and evolution of life, the diversification of complex life forms, the appearance of large predators, and the causes and consequences of oxygenation of the atmosphere.
Applies to requirement(s): Math Sciences
M. McMenamin
Advisory: Potential Environmental Studies and Geology majors should consider taking GEOL-123 concurrently with this course.

GEOL-116 Art in Paleontology
Spring. Credits: 4
Paleontological art brings ancient organisms back to life. In this course we will consider the role that "PaleoArt" itself plays as a mode of scientific discovery. Beginning with an analysis of the pioneering paleoart of Charles R. Knight, we will examine how paleoartists have uncovered key information about prehistoric life well in advance of its recognition by the scientific community. In a collaborative class project, we will identify the best and most representative works for a possible display somewhere on campus. For individual final class projects, students may choose between a research paper and presentation, and their own paleontological artwork in any visual medium. For the latter, students will be able to utilize resources of the Fimbel Maker and Innovation Lab.
Applies to requirement(s): Math Sciences
Other Attribute(s): Speaking-Intensive, Writing-Intensive
M. McMenamin

GEOL-126 The Cambrian Explosion
Fall. Credits: 4
The origin of animals was arguably the most important event in earth history. In this course we will review the history of earth, learn basic geology, and then examine the problem of the origin of animals by studying Mount Holyoke College's superb and unique collection of Proterozoic and Cambrian fossils. The emergence of animals has been called the Cambrian explosion. We will examine what this means for our understanding of evolution as we evaluate hypotheses proposed to explain the relatively sudden appearance of more than half of known animal phyla during the Cambrian event.
Applies to requirement(s): Math Sciences
Other Attribute(s): Speaking-Intensive, Writing-Intensive
M. McMenamin

GEOL-131 Introduction to Hydrology: A Data Perspective
Not Scheduled for This Year. Credits: 4
Understanding hydrology (the distribution and movement of water at the earth's surface) is critical for resource management and climate modeling. With an eye toward these applications, we will use observational data to explore the components of the water cycle (precipitation, evapotranspiration, soil moisture, and streamflow) and the physical processes that govern them. Lectures and hands-on computer exercises are aimed at students with interests in earth and environmental science or data science. No previous experience is necessary. Students will receive an introduction to statistics, computer programming, data visualization techniques, and available environmental data sources.
Applies to requirement(s): Math Sciences

GEOL-133 Mass Extinction, Dinosaurs and Ecological Recovery
Not Scheduled for This Year. Credits: 4
Beginning in Precambrian time over a half billion years ago, mass extinctions have periodically decimated earth's biota and left the biosphere in ruins. For example, both the Permo-Triassic and the End-Cretaceous mass extinctions reshaped life on earth and initiated new geological eras. In this course we will examine why mass extinctions occur and study the ways in which the biosphere recovers from mass extinction events. We will also evaluate the claim that we humans are causing a mass extinction and examine proposals regarding the steps we might take to hasten biospheric recovery.
Applies to requirement(s): Math Sciences
Other Attribute(s): Speaking-Intensive, Writing-Intensive
M. McMenamin
Prereq: Any one course in biology, chemistry, environmental studies, geology, or physics.
GEOL-137 Dinosaurs
Fall. Credits: 4
The first dinosaur fossils to be recognized in North America, footprints of the creatures, were found in South Hadley. The very first dinosaur species described by a woman researcher, and one of the most ancient dinosaur species in the United States (Podokesaurus holyokensis), was discovered close to the Mount Holyoke campus. In this course we will learn the main types of non-avian dinosaurs, compare them to other ancient and modern vertebrates, assess their relationship to birds, debate their physiology (cold-blooded or warm blooded?), examine the ecology of the world they inhabited, and by means of field work, rock drilling and excavation, resume the search for a new specimen of Podokesaurus. To complete the final project, students will select a dinosaur species and study its geological age, geographic distribution, environmental preferences, ecological roles, feeding and reproductive strategies, and body form as they review the history of attempts to reconstruct their adopted dinosaur.
Applies to requirement(s): Math Sciences
Other Attribute(s): Speaking-Intensive
M. McMenamin

GEOL-141 Making the Past: Geosciences in the Makerspace
Spring. Credits: 4
The great German paleontologist Dolf Seilacher once remarked that “drawing enforces careful observation.” As a consequence, Seilacher drew all of the illustrations for his influential scientific publications. Taking Seilacher’s insight into three dimensions, in this course we will utilize Mount Holyoke’s Makerspace to reconstruct ancient organisms. Studies have shown that well-crafted reconstructions of ancient creatures contribute substantially to improved scientific interpretation of their functional morphology, behavior and paleoecological role(s). We will use Makerspace resources, Pixologic’s Sculptris, 3D printing and other tools to improve our understanding of the morphologies and activities of ancient organisms, while gleaning information derived from the rock record to analyze their ancient morphologies and behaviors.
Applies to requirement(s): Math Sciences
M. McMenamin

GEOL-201 Rocks and Minerals
Spring. Credits: 4
In this course you will learn to recognize the common rock-forming minerals and principal rock types, and to understand their origins, properties, associations, and geological significance. Observational skills and hand sample identification will be emphasized in lab.
Applies to requirement(s): Math Sciences
S. Dunn
Coreq: GEOL-201L.
Advisory: Students must have either a one-year high school earth science class or any 100- or 200-level geology course or GEOG-107.

GEOL-202 History of Earth
Spring. Credits: 4
This course explores the evolution and interaction of life, rocks, oceans, and air during the past 4 billion years of earth history. Some topics covered are: the geologic time scale, significant events in earth history, ice ages and greenhouse atmospheres, continental drift, extinctions and radiations of flora and fauna, the geology of the anthropocene, and absolute and relative dating of rocks. Oral presentations and writing assignments focus on the design and testing of earth science hypotheses, critical analysis of recently published research on earth history, and proposal writing.
Applies to requirement(s): Math Sciences
Other Attribute(s): Speaking-Intensive, Writing-Intensive
M. Markley
Prereq: One 100-level Geology course.

GEOL-203 The Earth's Surface
Fall. Credits: 4
The surface of the Earth is a history book of past environmental change. Every hill and valley, every erosional feature and every deposit is the result of processes acting at the Earth's surface. In this course we study these processes (e.g. glaciers, rivers, slopes, coastlines, arid regions, frozen ground, cave formation, soil development and groundwater) to understand how they work and to understand the resulting landforms and deposits. With this understanding we can then observe different landforms and deposits and infer past processes (i.e. environments of deposition). Field work and trips allow students to explore first-hand the processes that have created and modified the Earth's surface.
Applies to requirement(s): Math Sciences
A. Werner
Prereq: One 100-level Geology course. Coreq: GEOL-203L.

GEOL-210 Plate Tectonics
Spring. Credits: 4
Plate tectonic theory explains the origins of volcanoes and earthquakes, continental drift, and the locations of mountain belts and oceans. This course focuses on the geometry of plate tectonics. Topics include mid-ocean ridge systems, transform faults, subduction zones, relative plate motion, earthquake analysis, triple point junctions, and stereographic projection. Work includes individual research projects on active plate boundaries.
Applies to requirement(s): Math Sciences
Other Attribute(s): Speaking-Intensive, Writing-Intensive
M. Markley
Prereq: Any 100-level Geology course.
Advisory: Comfort with geometry and trigonometry required.

GEOL-211 Uranium
Not Scheduled for This Year. Credits: 4
From the A-bomb to zircon, uranium has revolutionized humanity’s destructive potential and wisdom about time. Uranium is the planet’s heaviest naturally occurring element, and it transforms by both radioactive decay and nuclear fission. This course uses computer modeling to explore these two transformations and what we make of them, specifically: the age of the earth, high-precision dating of recent geologic and climate events, nuclear power, nuclear weapons, and radiation and health. Writing and reading assignments focus on science communication for a general audience.
Applies to requirement(s): Math Sciences
M. Markley
Prereq: One course in Chemistry, Geology, Math, or Statistics.
GEOL-227 Groundwater Geology
Not Scheduled for This Year. Credits: 4

The demand for and the contamination of groundwater resources are major environmental concerns. To better understand the dynamics of the groundwater system, we will cover topics including the hydrologic cycle, surface and subsurface hydrology, groundwater resource evaluation, and groundwater contamination.

Applies to requirement(s): Math Sciences

A. Werner
Prereq: One Geology course or ENVST-200. Coreq: GEOL-227L.

GEOL-229 Hydrology and Hydrogeology: Hydrological Cycle, Surface, and Groundwater Movement
Spring. Credits: 4

This course will introduce students to water science where we investigate the hydrological cycle, water distribution on the earth’s surface and subsurface at the continental and catchments scale. We will study atmospheric processes such as precipitation, evapotranspiration, and surface runoff to understand how it affects the quantity and quality of potable water availability. Students will learn and practice introductory level groundwater calculations which are mathematical equations that describe the flow and storage of water. This introduction to hydrology and hydrogeology contains a laboratory component which will be conducted both indoors and outdoors during the semester. Laboratory experiments will reflect the topics and equations discussed during lecture periods. There will be at least one class local field trip to show students hydrologically significant locations in our area. Some labs will be held at MHC’s Environmental Monitoring Program sampling sites on campus where students will learn to use instruments that are commonly used in this field of study.

Applies to requirement(s): Math Sciences

M. Allen
Coreq: GEOL-229L.

GEOL-240 Geological Resources and the Environment
Not Scheduled for This Year. Credits: 4

This course surveys the geology and exploitation of important mineral deposits and energy resources. We will discuss factors that govern the economics of their production and the environmental implications of their extraction and use.

Applies to requirement(s): Math Sciences

S. Dunn
Instructor permission required.

GEOL-295 Independent Study
Fall and Spring. Credits: 1 - 4

The department
Instructor permission required.

GEOL-322 Igneous and Metamorphic Petrology
Not Scheduled for This Year. Credits: 4

This course covers mineralogical and chemical compositions, classification, genesis, and mode of occurrence of igneous and metamorphic rocks, including relationships between rock-forming processes and global plate tectonics; labs involve the study of representative rock suites in hand specimen and thin section, introduction to analytical techniques and in-depth coverage of mineral optics.

Applies to requirement(s): Math Sciences

S. Dunn
Prereq: GEOL-201 and CHEM-150. CHEM-150 may be taken concurrently. Coreq: GEOL-322L.

GEOL-326 Climate Change: Polar Places and Spaces
Spring. Credits: 4

Earth’s polar environments have undergone rapid change during the 21st century and scientists have generated important new data and made groundbreaking insights (https://serc.carleton.edu/polarpass/about.html). Using real data, diverse material types, and a range of activities, we have been selected to "Beta-test" education modules designed to teach polar science and polar exploration. Every module uses a combination of 360-degree interactive environment(s), GIS, and other materials to provide students with authentic scientific data and the opportunity to dive into the field experience. According to the PolarPass website, "Each module explores a specific theme, provides a series of units within that theme to walk students through discovery. Learning activities are designed to enhance students’ geospatial skills and support development of a sense of polar place, even without traveling to these exciting environments." Note: this is an upper-level climate science course that will involve using real climate and proxy data to better understand past and present climate change. Human dimensions of climate change although incredibly important are not the focus of this course.

Applies to requirement(s): Math Sciences

A. Werner
Prereq: GEOL-203 or ENVST-200.

GEOL-333 Structural Geology and Orogenesis
Not Scheduled for This Year. Credits: 4

This course covers the basic techniques of field geology and structural analysis. Lectures concentrate on field techniques, stress, strain, faulting, folding, rock strength, deformation mechanisms, and multidisciplinary approaches to mountain building (orogenesis). Many labs are field trips that involve data collection. Weekly writing assignments focus on presenting original research and distinguishing between observations and interpretations.

Applies to requirement(s): Math Sciences

M. Markley
Prereq: GEOL-123 and GEOL-201. GEOL-201 may be taken concurrently. Coreq: GEOL-333L.

GEOL-342 Seminar in Geology
Seminars offer directed study and discussion of one or more selected topics in geology. Topics vary from year to year. Consult the department for information about future seminars.

GEOL-342DV Seminar in Geology: 'Death Valley Field Course'
Not Scheduled for This Year. Credits: 4

This seminar will cover selected topics on the geology of Death Valley region, California. We will meet for two hours per week up until spring break, then embark on a nine-day field trip to Death Valley National Park, March 2021. A participation fee is required. Students will be responsible for researching particular topics and presenting a final report.

Applies to requirement(s): Meets No Distribution Requirement

S. Dunn
Instructor permission required.

Prereq: Two geology courses.
GEOL-342HY Seminar in Geology: "Geology and Hydrology Underfoot"
Not Scheduled for This Year. Credits: 4
To avoid the worst of climate change we must wean ourselves from fossil fuels and develop and use more sustainable methods of heating and cooling. Is it possible to replace our central heating plant with heat from earth? What are the rocks that underlie campus and how does ground water move through them? In this course we will learn about the geology of the Connecticut Valley to better understand the geology under our campus. Using borehole geophysical and temperature data collected from a deep well on campus, we will correlate the borehole stratigraphy with the regional valley stratigraphy and we will assess the hydrology and geothermal potential of the geology beneath campus.
Applies to requirement(s): Math Sciences
M. Markley, A. Werner
Prereq: One of the following: GEOL-201, GEOL-202, GEOL-203, GEOL-224, GEOL-247, ENVST-200. Coreq: GEOL-342HYL.

GEOL-342PE Seminar in Geology: 'Plastics in the Environment'
Not Scheduled for This Year. Credits: 4
Plastics are a part of everyday life. They are inexpensive, lightweight, last forever, and are accumulating in the environment. Macro-plastics are killing whales and micro-plastics are ingested by plankton. Studies have found micro-plastics in remote areas of the planet and in rainwater indicating wide-scale atmospheric transport and deposition. This seminar is aimed at understanding plastics as a material, how they are used, the ways they enter the environment, the ecological and health impacts and potential solutions to the problem. There will be weekly readings with faculty or student-led discussions. A term paper on a plastics topic of your choice will culminate the course.
Applies to requirement(s): Math Sciences
Other Attribute(s): Speaking-Intensive, Writing-Intensive
A. Werner
Prereq: 8 credits in the sciences.

GEOL-342WA Seminar in Geology: 'Water Issues Worldwide'
Fall. Credits: 4
Potable water is in much higher demand worldwide because of climate change. This seminar discusses research publications about the problems contributing to current water insecurity. Lectures will focus on assigned weekly readings that discuss each issue, case studies in multiple countries, and the analytical methods used for analyses. In addition, students will be required to complete weekly written assignments and a research project where they will apply the gained knowledge. The structure of this course will be beneficial to students who plan on attending graduate school in the STEM fields.
Applies to requirement(s): Math Sciences
M. Allen
Prereq: 8 credits in the sciences.

GEOL-395 Independent Study
Fall and Spring. Credits: 1 - 8
The department
Instructor permission required.